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We simulate the fractal dimensions (D) of glass-ceramics resulting from different glass
microstructures, at their percolation thresholds. We consider only crystallisation in glasses
resulting from phase separation by nucleation. Phase separation may occur at a lower
temperature or at the same temperature at which crystallisation takes place. We have
studied both cases. The structure-property relationship of such glass-ceramics is dictated
by the evolution of the structure of crystalline phase percolation cluster. At the percolation
threshold the structure of the percolation path may be quantified by its fractal
dimensionality (D). The value of D displays universal behaviour for a system in the
thermodynamic limit. However, it deviates owing to finite size effects. Our simulations
suggest that these deviations for a given system size depend on the nature of the glass
microstructure. As the value of D reaches Euclidean dimension, the system attains more
compact percolation cluster. This has invariably occurred in the present investigation for
fine crystalline phase microstructure. C© 2003 Kluwer Academic Publishers

1. Introduction
Phase separation in glasses gives rise to two distinct
types of glass microstructures. These pertain to (i)
droplets of a different glass phase in the matrix of
another glass phase and (ii) interconnected network
like structures of the two glassy phases. The latter mi-
crostructures may result from phase separation by nu-
cleation at higher second phase volume fraction ow-
ing to coalescence but normally are attributed to the
characteristic features of phase separation by spinodal
decomposition [1]. In contrast to the above, droplet
microstructures result only due to phase separation
by nucleation. The microstructural evolution of glass-
ceramics is critically dependent on such glass mi-
crostructures since often only one of the phase will
have a composition that is able to crystallise easily at
given temperature. Besides this, if phase separation and
crystallisation occur simultaneously then the kinetics of
the former process and the consequent local composi-
tional changes in the system will affect the latter [2]. If
both glassy phases are spanning the three-dimensional
microstructure of the glass then we can obtain an in-
terpenetrating glass-ceramic composite with percolat-
ing crystalline and glassy phase(s) in the system. The
bulk transport properties of glass-ceramics are depen-
dent on the presence and structure of the spanning
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or percolating crystalline phase. The importance of
such microstructure is enhanced when the glassy and
the crystalline phase have significantly different prop-
erties since both phases span the three dimensional
microstructure of the system. For instance, the glass
might provide strengthening to the material while
the crystalline phase the required transport property
[3].

Properties of such systems are, therefore, dictated by
the structure of the percolation cluster at and above xc
(the fraction of crystalline phase in the glass-ceramic at
the percolation threshold). When it first appears the per-
colation path is extremely rarefied and stringy. This ten-
uous nature of the percolation cluster is characterised
in the literature [4] by the fractal dimensionality (D).
‘D’ admits fractional value in contrast to the integral
value of a Euclidean structure. Fractal objects are char-
acterised by self similarity and fractional dimension
D. Such objects possess similar morphology under a
range of magnification indicating a hierarchical struc-
ture in the system. This is often termed as scale invari-
ance property of a fractal object [5]. This remarkable
characteristic of the growing percolating cluster at the
percolation threshold may give rise to novel behaviour
in the system. In the area of percolation theory [6],
at percolation threshold xc, D is computed using the
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relation

M(L) ∝ LD (2)

where M is the number of sites in the infinite cluster
with the system size given by L . For example, the total
number of sites in a three dimensional system is given
by L × L × L . The more D differs from the Euclidean
dimension (d) the more rarefied is the structure. Hence,
this quantity is of prime importance with regard to struc-
ture of the percolation cluster. In this paper, we present
and discuss the results regarding the D values of glass-
ceramics at their percolation thresholds found from our
simulation studies of such systems from the perspective
of percolation theory [7].

We consider crystallisation in glasses that are un-
dergoing or have undergone phase separation by nu-
cleation. Phase separation of oxide glasses gives rise
to two glassy phases with network forming oxide rich
(NFR) and the other network forming oxide lean (NFL)
compositions. For prior phase-separated glasses we as-
sume that the droplet phase has the NFL composi-
tion and crystallisation can only occur in this phase.
In this case, if the droplet microstructure is very fine
then crystal nucleation density is much higher com-
pared to homogeneous glasses. Crystal growth occurs
rapidly and is limited to within the boundaries of the
droplets [8, 9]. Droplet regions of phase separation
in glasses are known to be of relatively uniform size
[10] and consequently uniform sizes of crystallites are
obtained.

For simultaneous phase separation and crystallisa-
tion we only consider the case in which crystallisation
occurs in the matrix. As the former process progresses
with time, more and more droplets of NFR phase are
formed and the matrix composition tends towards the
NFL composition. With change in the matrix compo-
sition towards the NFL composition the crystal nucle-
ation rate increases with time and later attains a constant
value when the matrix phase reaches its equilibrium
NFL composition [2]. As the initial glass composition
is shifted away from NFL composition the time required
to achieve constant nucleation rate (induction time)
is found to increase. Thus, induction time indicates
time required by the system to go into the steady state
regime of nucleation from the transient one during the
process of crystallisation. We now present the salient
features of the cases modelled. The details of the mod-
els, their crystallisation behaviour and the other aspects
of percolation behaviour are given elsewhere [7, 11].
The results of these models are in conformity with the
experimental observations [12–14].

2. The model
All systems in these cases are three-dimensional (3D)
cubic array of L × L × L sites. We start with a model
system (called system 1 and constructed using the static
Monte Carlo technique) with isothermal crystallisation
kinetics, which qualitatively resembles that of a homo-
geneous oxide glass [6]. The salient features of this sys-
tem relate to homogeneous nucleation and polymorphic

crystallisation. The system is comprised of sites and
these sites are assigned values between 0 and 1. The
spatial distribution of numbers assigned to sites around
each site, in the present study, is also near to a Gaussian.
We conceive a probability p that is zero initially and
then incremented by 0.00001 in each step. During each
such step we compare the site values with p and if the
former is less than the latter then the site is defined to
be crystalline. Crystallisation occurs as p is increased
from its initial value of 0. Thus for a given p, every site
is supposed to possess a cluster of size [1−(site value-
p)]r∗, where r∗ is the critical size of the nucleus. The
p value at which a crystalline cluster connecting two
opposite ends of system is first observed is defined as
the percolation threshold (pc). The probability of a site
being crystalline at any p is given by the fraction of
crystalline phase (x) formed at the value. The fraction
of crystalline phase at pc is xc.

We extend this model to include the simulation of
crystallisation of phase-separated glasses. To model
such systems we assume that the systems consist of
two types of sites: NFL and NFR. We assume that un-
der the given conditions crystallisation can only occur
in the NFL phase. For systems with different compo-
sitions we assume different relative fractions of NFL
and NFR phases. Since crystallisation can occur only
in NFL phase therefore, we assume sites belonging
to this phase to possess values according to the sys-
tem 1 distribution. Rest of the sites (belonging to
NFR phase) does not crystallise during the isother-
mal crystallisation (IC) process and therefore are as-
signed value 1. As mentioned earlier that for any val-
ues of p (between 0 to 1), the corresponding r of these
sites (belonging to NFR) will be less than r∗. Hence
possibility of crystallisation on such sites is a priori
ruled out.

However, for simultaneous phase separation and
crystallisation the nature of a site (whether it is NFL
or NFR) is not defined prior to crystallisation. A fi-
nite probability exists for a site to belong to either of
the compositions [7, 11]. Now according to the glass
composition and the droplet microstructure and further
whether phase separation and crystallisation occur si-
multaneously or not we conceive of three cases. For
all cases, we assume the droplet size to be constant
in a system akin to those observed in actual experi-
ment [10]. The three cases of phase-separated glasses
that we deal with are labelled as 2, 3, and 4. To under-
stand the effect of different fractions of droplet phase
on IC we select two different compositions with dif-
ferent fractions of NFL phase in each case. The details
of the systems we model in each case are given in Ta-
ble I. As mentioned before the IC behaviour of such
systems has been reported elsewhere [11] and is in
qualitative agreement with experimental observations
[12–14].

Now systems 2a, 2b, 3a, 3b, 4a, and 4b are subjected
to IC and the percolation characteristics of the systems
studied. In the next two sections we present and discuss
the percolation characteristics (viz. the fractal dimen-
sionality, the percolation threshold and the strength of
the percolation cluster) at the percolation threshold.
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T ABL E I Characteristics of various systems modelled in the present
investigation

Nature of glassy
phase(s)

Case System
Fraction of
NFL phase NFL NFR

1h 1 1 Homogeneous
2pps 2a 0.2 Droplet (a cube

of sites)
Matrix

2b 0.3 -do- -do-
3pps 3a 0.2 Droplet—size

of one site
Matrix

3b 0.3 -do- -do-
4spsc 4a 0.9 (at the end

of crystallisation
process)

Matrix Droplet—size
same as
2a & 2b

4b 0.8 (at the end of
the crystallisation
process)

-do- -do-

hHomogeneous glass.
ppsprior phase-separated.
spscsimultaneous phase separation and crystallisation.

3. Results and discussion
The percolation threshold is found in terms of fraction
of crystalline phase (x) in the system. As mentioned
before, this (x) is interpreted as the probability of any
site in the system being crystalline. The value of the
percolation threshold of a system is unique only for an
infinite system. Such a characteristic value is termed
as universal value of a system in thermodynamic limit.
Therefore, for a finite system, we determine D only
at an effective percolation threshold xc(L). This is the
most probable value of x for the system at the perco-
lation threshold found from a large number of Monte
Carlo (MC) simulations [6, 11]. We used 500 such MC
simulations of 3D cubic arrays of size corresponding
to L = 180 to find xc(L) for each system. The slope of
the plot of log M versus log L gives D for the system
considered. The data points required for such plots are
the average values of 500 MC simulations for systems
of size L × L × L . The different system sizes used for
this purpose are those corresponding to L = 140, 150,
160, 170 and 180. The value of D (in column 2) and xc
(in column 3) for each system modelled is given in Ta-
ble II. For the sake of comparison we have also given
the universal value of D of percolation cluster at the
threshold for 3d systems.

We treat the value of D for system 1 as the stan-
dard for the given system size since all other systems

T ABL E I I System characteristics at xc

System D xc(L)

Universal valuea 2.53 –∗
1 2.51 0.0969
2a 2.51 0.1429
2b 2.53 0.1055
3a 2.62 0.0952
3b 2.58 0.0941
4a 2.50 0.0965
4b 2.68 0.1049

aReference [5].
∗System specific.

Figure 1 Log M versus log L plots for systems 2a and 2b.

are extensions of this model. As expected the D value
of system 1 is almost the same as the universal value.
Further, from the results given in Table II it is apparent
that the fractal dimensions of systems 2a, 2b, and 4a
are same or near to the universal value. Fig. 1 shows
the log M versus log L plots for systems 2a and 2b
and, as expected, the plots are straight-line fits. Fig. 2
shows the log M versus log L plots for systems 3a and
3b. Fig. 3 depicts the log M versus log L plots for sys-
tems 4a and 4b. The plots in Fig 3 are straight-line fits.

Figure 2 Log M versus log L plots for systems 3a and 3b.

Figure 3 Log M versus log L plots for systems 4a and 4b.
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However, the D values of systems 3a and 3b show 2–
3% deviation and 4b shows significant deviation (about
6%) from the universal value. It is important to analyse
and understand particular features of systems leading to
different finite size effects since real systems are always
finite. The primary difference between cases considered
pertains to the microstructural features of the glasses.
In this sense, we compare the D values of different sys-
tems with respect to the crystallisation characteristics of
different systems owing to different glass microstruc-
tures. We first compare systems 2a, 2b, 3a, and 3b since
these systems are crystallisation models of prior phase-
separated glasses and then discuss the results pertaining
to systems related to simultaneous phase separation and
crystallisation (4a and 4b).

Systems 2a, 2b, 3a and 3b are similar since crystalli-
sation occurs in the droplets in prior phase-separated
systems. However, the droplet size in systems 3a and
3b is much smaller than in 2a and 2b. For systems in
case 2 each droplet consists of 27 sites with an edge
consisting of three site each (i.e., the length of an edge
is 3 arbitrary units). Further, such droplets may have
common sites (that is, two overlapping droplets with
some common space) thus forming connected clusters
of droplets, while in systems 3a and 3b a droplet con-
sists of one site of the system only and therefore little or
no growth is possible. Owing to this the crystal nucle-
ation density of system 3a and 3b are higher compared
to 2a and 2b. However, growth may be possible if sev-
eral droplets are neighbours, i.e., droplets have com-
mon sides/faces. Consequently system 3b has a lower
crystal nucleation density than 3a since more growth is
possible.

As mentioned before D is a universal exponent.
Therefore the deviation in D values of systems 3a and
3b indicate that the finite size effects owing to their glass
microstructural features lead to slower convergence to
the universal value compared to other systems. Fur-
ther, compared to other systems the high D values of
systems 3a and 3b indicate that the average density is
nearer to the Euclidean density. This indicates that the
structure is more compact when the droplet size is finer
and consequently crystal nucleation density is higher.

Next we observe systems 4a and 4b have very differ-
ent D values. Here crystallisation is occurring during
phase separation. Thus the composition of the systems
changes during the process. Consequently the results
of our modelling show that the induction periods for
crystal nucleation and growth are different. This means
growth can only occur when the region surrounding the
crystal nucleus has acquired NFL composition. With

increase in difference of the initial glass composition
from the NFL composition then the difference between
induction periods for crystal nucleation and growth in-
creases. Owing to this impeded growth, crystal nucle-
ation density in system 4b is higher than that of system
4a in the intermediate and later stages of transforma-
tion [7, 11]. As has been found for systems 3a and
3b, a higher crystal nucleation density leads to a more
compact structure at the percolation threshold. That the
effect is quite severe for system 4b is brought out by
the magnitude of the deviation of D from the universal
value.

4. Conclusions
We have determined the fractal dimensionality of var-
ious models of glass-ceramics resulting from glasses
that are prior phase-separated and those that are under-
going crystallisation during phase separation. We have
found that for finite systems the fractal dimensionality
increases with increase in fineness of the glass-ceramic
microstructures. That is, with increases in crystal nu-
cleation density the structure of the percolation cluster
becomes more compact since the deviation from univer-
sal fractal dimensionality is towards the Euclidean one.

References
1. W. H A L L E R , J. Chem. Phys. 12 (1965) 686.
2. P . F . J A M E S , in “Advances in Ceramics,” Vol. 4, edited by J.

H. Simmons, D. R. Uhlmann and G. H. Beall (American Ceramic
Society, Columbus, Ohio, 1982).

3. D . R . C L A R K E , J. Amer. Ceram. Soc. 75 (1992) 739.
4. R . Z A L L E N , “The Physics of Amorphous Materials” (Wiley, New

York, 1983) Chap. 3.
5. R I C H A R D F. V O S S , in “The Science of Fractal Images” edited

by Heinz-Otto Peitgen and Dietmar Saupe (Springer-Verlag, 1988)
Chap. 1.

6. D . S T A U F F E R and A. A H A R O N Y , “Introduction to Percolation
Theory” (Taylor and Francis, London, 1992) Chap. 3.

7. I . S I N H A , Ph.D. thesis, BHU, Varanasi, India, 2000.
8. N . K R E I D L , J. Non. Cryst. Solids. 129 (1991) 1.
9. R . R O Y , J. Amer. Ceram. Soc. 43 (1960) 670.

10. P . W. M C M I L L A N , “Glass-Ceramics,” 2nd ed. (Academic Press,
London, 1979).

11. I . S I N H A and R. K. M A N D A L , J. Mater. Sci. 37 (2002)
5215.

12. F . Y O N E Z A W A, S . S A K A M O T O, K. A O K I , S . N O S E

and M. H O R I , J. Non. Cryst. Solids 106 (1988) 262.
13. A .H .R A M S D E N and P .F . J A M E S , J. Mater. Sci. 19 (1984) 2894.
14. E . D . Z A N O T T O, P . F . J A M E S and A. F . C R A I E V I C H ,

ibid. 21 (1986) 3050.

Received 8 August 2002
and accepted 22 April 2003

3472


